top of page
Flexible%20Fasting_edited.png

HOME      FAQ       CALCULATORS      REVIEWS      JOIN NOW   

Low-Grade Systemic Inflammation Interferes with Anabolic and Catabolic Characteristics of the Aged Human Skeletal Muscle

Draganidis D, Jamurtas AZ, Chondrogianni N, Mastorakos G, Jung T, Grune T, Papadopoulos C, Papanikolaou K, Papassotiriou I, Papaevgeniou N, Poulios A, Batrakoulis A, Deli CK, Georgakouli K, Chatzinikolaou A, Karagounis LG, Fatouros IG

Dec 7, 2021

Abstract
Aging is associated with the development of chronic low-grade systemic inflammation (LGSI) characterized by increased circulating levels of proinflammatory cytokines and acute phase proteins such as C-reactive protein (CRP). Collective evidence suggests that elevated levels of inflammatory mediators such as CRP, interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) are correlated with deteriorated skeletal muscle mass and function, though the molecular footprint of this observation in the aged human skeletal muscle remains obscure. Based on animal models showing impaired protein synthesis and enhanced degradation in response to LGSI, we compared here the response of proteolysis- and protein synthesis-related signaling proteins as well as the satellite cell and amino acid transporter protein content between healthy older adults with increased versus physiological blood hs-CRP levels in the fasted (basal) state and after an anabolic stimulus comprised of acute resistance exercise (RE) and protein feeding. Our main findings indicate that older adults with increased hs-CRP levels demonstrate (i) increased proteasome activity, accompanied by increased protein carbonylation and IKKα/β phosphorylation; (ii) reduced Pax7+ satellite cells; (iii) increased insulin resistance, at the basal state; and (iv) impaired S6 ribosomal protein phosphorylation accompanied by hyperinsulinemia following an acute RE bout combined with protein ingestion. Collectively, these data provide support to the concept that age-related chronic LGSI may upregulate proteasome activity via induction of the NF-κB signaling and protein oxidation and impair the insulin-dependent anabolic potential of human skeletal muscle.

Full Text available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670932/

Read Article

Inflammation, Cell Function, Aging, Muscle Mass

Flexible Fasting.png

The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only.  The content of this blog is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Users should not disregard, or delay in obtaining, medical advice for any medical condition they may have, and should seek the assistance of their health care professionals for any such conditions. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication, or have a medical condition.

  • Facebook
  • YouTube
  • Pinterest
  • Instagram

© 2021 by Flexible Fasting • All rights reserved • Created + Maintained by EmDesign

Privacy Policy • Legal Disclaimer  • Terms of Use • HSA/FSA Information

bottom of page